Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2000 Dec; 37(6): 491-7
Article in English | IMSEAR | ID: sea-26588

ABSTRACT

It is shown that dinoseb, added to subchloroplast photosystem-II (PS-II) preparations from pea at a concentration higher than 5 microM, along with blocking the electron transfer on the acceptor side of PS-II, induces the following effects revealing its capability to have redox interaction with the components of PS-II reaction center (RC)-pheophytin (Pheo) and chlorophyll P680: (1) acceleration of the dark relaxation of absorbance (delta A) and chlorophyll fluorescence (delta F) changes related to photoreduction of Pheo as a result of the photoreaction [P680Pheo] [symbol: see text] [P680Pheo-] that leads to elimination of the delta A and delta F at a concentration of the inhibitor higher than 50 microM; (2) lowering of the maximum level of fluorescence (F) due to a decrease of delta F under the condition when the electron acceptor, QA, is reduced; (3) loss of the described effects of dinoseb and appearance of its capability to donate electron to RC of PS-II in the presence of dithionite which reduces dinoseb in the dark; (4) inhibition of delta A related to photooxidation of P680; (5) activation of delta A related to photooxidation P700 in photosystem-I (PS-I) preparations (a similar effect is observed upon the addition of 0.2 mM methylviologen). It is suggested that redox interaction with the pair [P680+Pheo-] leading to the shortening of its life-time contributes to the general effect of inhibition of electron transfer in PS-II by dinoseb.


Subject(s)
2,4-Dinitrophenol/analogs & derivatives , Electron Transport/drug effects , Herbicides/pharmacology , Light-Harvesting Protein Complexes , Peas/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosystem I Protein Complex , Photosystem II Protein Complex
SELECTION OF CITATIONS
SEARCH DETAIL